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Abstract

Large language models (LLMs) are reshaping recommender systems by bringing
deep semantic understanding and text generation into pipelines that traditionally
relied on sparse IDs and task-specific models. This survey shows how LLMs im-
prove cold-start accuracy, explanation quality and user engagement, and compares
four representative methods (BERT4Rec, P5, TIGER and a headline-generation
framework) against a matrix-factorisation baseline. On MovieLens-1M, LLM
variants raise Recall@20 by up to 44 %, while an online A/B test reports a 7–10 %
click-through lift from LLM-generated headlines. This paper outlines the trade-off
between these gains and a ten-fold rise in inference cost, discusses privacy and
carbon-footprint concerns, and argues that hybrid retrieval–generation pipelines
and pre-generated content caches will be key to practical deployment. Finally,
this paper highlights multimodal dynamic personalisation, e.g. combining adaptive
titles and thumbnails—as a promising research frontier.

1 Introduction

Recommender systems play a vital role in helping users navigate large information spaces. With the
recent emergence of large language models, a large area of research in this field has been focused
on exploring ways to incorporate these models into the recommendation pipeline. This paper (i)
summarises the theoretical foundations of CF/CBF/graph paradigms and LLMs, (ii) reviews six
influential LLM-based techniques, and (iii) presents a compact comparative analysis, culminating in
a critical reflection on limitations and future work.

2 Theoretical Background

2.1 Classical Recommender Systems

Generally, we speak of three categories: collaborative filtering, content-based filtering, and graph-
based methods. Collaborative filtering (CF) infers user preferences from past interactions using matrix
factorization or pairwise ranking [8, 3]. Content-based filtering (CBF) leverages item attributes and
user profiles to recommend similar items [5]. Knowledge-graph and graph-neural methods propagate
signals along relational edges between users, items, and entities, improving accuracy in rich-domain
settings [13]. While these classical paradigms scale efficiently, they lack deep semantic understanding
and generative capacity.

2.2 Large Language Models

Large Language Models (further referred to as LLMs) are a subset of Natural Language Processing
Models, distinguished by their scale. LLMs learn linguistic and factual knowledge and some can
generate very convincing text. Key to their architecture is the self-attention mechanism [12, 1],
enabling contextual reasoning over long sequences.
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Figure 1: Six paradigms of LLM-based recommendation.

3 LLM-Based Methods

3.1 Sequential Transformers (BERT4Rec)

BERT4Rec masks items in a user’s interaction sequence and predicts them with a bidirectional
encoder [9].

3.2 Unified text-to-text paradigm (P5)

P5 reformulates diverse recommendation tasks (rating, ranking, explanation) as prompts to a T5-style
model. Cross-task pre-training boosts NDCG@20 on MovieLens-1M to 0.338 [2].

3.3 Generative retrieval (GPT4Rec)

GPT4Rec first generates search queries from the history, then retrieves candidates, yielding up to 75
% Recall@20 improvement on Amazon-Books [4].

3.4 Semantic-ID generation (TIGER & LIGER)

TIGER outputs semantic IDs directly, excelling at cold start [7]. LIGER is a hybrid model, which
combines dense retrieval with generation for balanced head–tail coverage [10].

3.5 Prompt-based content enrichment (LLM-Rec)

LLM-Rec uses GPT-style prompting to fill missing item attributes, improving CBF recall on sparse
recipe data [6].
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3.6 Dynamic Title Personalization

A KDD-2024 study rewrites news headlines per user intent, raising click-through rate (CTR) by 7–10
% in live traffic [11].

4 Comparative Analysis

Model Recall@20 NDCG@20
BPR-MF [8] 0.201 0.123
BERT4Rec [9] 0.269 0.176
P5 [2] — 0.338
TIGER [7] 0.289 0.195

Table 1: Metrics on MovieLens-1M copied verbatim from original papers; rows differ in protocol
(HR vs. Recall) but illustrate relative gains.

LLM-based models surpass MF by 30 to 44 % in Recall/NDCG, with TIGER leading on cold-start
items. P5 and TIGER yield human-readable prompts or IDs for sentence-level explanations, unlike
the black-box MF and BERT4Rec. Trade-off: BERT4Rec adds modest GPU cost. P5/TIGER incur
decoding latency around 20 to 50 ms versus microseconds for MF.

Dynamic title generation, as discussed in Section 3.6, increases CTR by 7–10 % [11]. Combining
such titles with query-aware thumbnails [14] could further boost engagement, but remains an open
question.

5 Conclusion & Discussion

LLMs shift recommendation research from embedding dot-products toward language-centric rea-
soning and generation. Empirical evidence shows consistent accuracy gains, richer explanations
and measurable engagement uplift, including improvements in cold-start performance and dynamic
title personalization, while incurring up to tenfold increases in computational cost. Risks such as
hallucination, bias amplification, and environmental footprint must be addressed. Hybrid architectures
that combine a lightweight CF retriever with a distilled LLM for re-ranking and natural-language
justification offer a practical compromise, already adopted by leading platforms. Future work should
quantify the carbon and privacy costs of LLM-based recommenders, enforce grounding to curb
factual drift, and explore privacy-preserving on-device models to ensure responsible personalization.

Dynamic content personalisation based on user intent is, in my view, the most promising frontier. Even
a 7–10 % CTR uplift is substantial, yet on-the-fly generation adds latency. A practical compromise
is to pre-generate candidate titles (or thumbnails) offline, augment the training corpus, and select
the best option at recommendation time with a lightweight scorer, retaining engagement gains while
keeping inference costs low.
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